Metamath Proof Explorer


Theorem oppglemOLD

Description: Obsolete version of setsplusg as of 18-Oct-2024. Lemma for oppgbas . (Contributed by Stefan O'Rear, 26-Aug-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses oppgbas.1
|- O = ( oppG ` R )
oppglemOLD.2
|- E = Slot N
oppglemOLD.3
|- N e. NN
oppglemOLD.4
|- N =/= 2
Assertion oppglemOLD
|- ( E ` R ) = ( E ` O )

Proof

Step Hyp Ref Expression
1 oppgbas.1
 |-  O = ( oppG ` R )
2 oppglemOLD.2
 |-  E = Slot N
3 oppglemOLD.3
 |-  N e. NN
4 oppglemOLD.4
 |-  N =/= 2
5 2 3 ndxid
 |-  E = Slot ( E ` ndx )
6 2 3 ndxarg
 |-  ( E ` ndx ) = N
7 plusgndx
 |-  ( +g ` ndx ) = 2
8 6 7 neeq12i
 |-  ( ( E ` ndx ) =/= ( +g ` ndx ) <-> N =/= 2 )
9 4 8 mpbir
 |-  ( E ` ndx ) =/= ( +g ` ndx )
10 5 9 setsnid
 |-  ( E ` R ) = ( E ` ( R sSet <. ( +g ` ndx ) , tpos ( +g ` R ) >. ) )
11 eqid
 |-  ( +g ` R ) = ( +g ` R )
12 11 1 oppgval
 |-  O = ( R sSet <. ( +g ` ndx ) , tpos ( +g ` R ) >. )
13 12 fveq2i
 |-  ( E ` O ) = ( E ` ( R sSet <. ( +g ` ndx ) , tpos ( +g ` R ) >. ) )
14 10 13 eqtr4i
 |-  ( E ` R ) = ( E ` O )