Metamath Proof Explorer


Theorem oppgbas

Description: Base set of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Hypotheses oppgbas.1
|- O = ( oppG ` R )
oppgbas.2
|- B = ( Base ` R )
Assertion oppgbas
|- B = ( Base ` O )

Proof

Step Hyp Ref Expression
1 oppgbas.1
 |-  O = ( oppG ` R )
2 oppgbas.2
 |-  B = ( Base ` R )
3 eqid
 |-  ( +g ` R ) = ( +g ` R )
4 3 1 oppgval
 |-  O = ( R sSet <. ( +g ` ndx ) , tpos ( +g ` R ) >. )
5 baseid
 |-  Base = Slot ( Base ` ndx )
6 basendxnplusgndx
 |-  ( Base ` ndx ) =/= ( +g ` ndx )
7 4 5 6 setsplusg
 |-  ( Base ` R ) = ( Base ` O )
8 2 7 eqtri
 |-  B = ( Base ` O )