Metamath Proof Explorer


Theorem oppgbas

Description: Base set of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Hypotheses oppgbas.1 O = opp 𝑔 R
oppgbas.2 B = Base R
Assertion oppgbas B = Base O

Proof

Step Hyp Ref Expression
1 oppgbas.1 O = opp 𝑔 R
2 oppgbas.2 B = Base R
3 eqid + R = + R
4 3 1 oppgval O = R sSet + ndx tpos + R
5 baseid Base = Slot Base ndx
6 basendxnplusgndx Base ndx + ndx
7 4 5 6 setsplusg Base R = Base O
8 2 7 eqtri B = Base O