Metamath Proof Explorer


Theorem oppgbas

Description: Base set of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Hypotheses oppgbas.1 O=opp𝑔R
oppgbas.2 B=BaseR
Assertion oppgbas B=BaseO

Proof

Step Hyp Ref Expression
1 oppgbas.1 O=opp𝑔R
2 oppgbas.2 B=BaseR
3 eqid +R=+R
4 3 1 oppgval O=RsSet+ndxtpos+R
5 baseid Base=SlotBasendx
6 basendxnplusgndx Basendx+ndx
7 4 5 6 setsplusg BaseR=BaseO
8 2 7 eqtri B=BaseO