Metamath Proof Explorer
Description: Base set of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015)
|
|
Ref |
Expression |
|
Hypotheses |
oppgbas.1 |
|
|
|
oppgbas.2 |
|
|
Assertion |
oppgbas |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
oppgbas.1 |
|
2 |
|
oppgbas.2 |
|
3 |
|
eqid |
|
4 |
3 1
|
oppgval |
|
5 |
|
baseid |
|
6 |
|
basendxnplusgndx |
|
7 |
4 5 6
|
setsplusg |
|
8 |
2 7
|
eqtri |
|