Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014) (Revised by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgpbas.1 | |- M = ( mulGrp ` R ) |
|
| mgpbas.2 | |- B = ( Base ` R ) |
||
| Assertion | mgpbas | |- B = ( Base ` M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpbas.1 | |- M = ( mulGrp ` R ) |
|
| 2 | mgpbas.2 | |- B = ( Base ` R ) |
|
| 3 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 4 | 1 3 | mgpval | |- M = ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) |
| 5 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 6 | basendxnplusgndx | |- ( Base ` ndx ) =/= ( +g ` ndx ) |
|
| 7 | 4 5 6 | setsplusg | |- ( Base ` R ) = ( Base ` M ) |
| 8 | 2 7 | eqtri | |- B = ( Base ` M ) |