Metamath Proof Explorer


Theorem rngmgp

Description: A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypothesis rngmgp.g G = mulGrp R
Assertion rngmgp Could not format assertion : No typesetting found for |- ( R e. Rng -> G e. Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 rngmgp.g G = mulGrp R
2 eqid Base R = Base R
3 eqid + R = + R
4 eqid R = R
5 2 1 3 4 isrng Could not format ( R e. Rng <-> ( R e. Abel /\ G e. Smgrp /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) ) : No typesetting found for |- ( R e. Rng <-> ( R e. Abel /\ G e. Smgrp /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) ) with typecode |-
6 5 simp2bi Could not format ( R e. Rng -> G e. Smgrp ) : No typesetting found for |- ( R e. Rng -> G e. Smgrp ) with typecode |-