Metamath Proof Explorer


Theorem rngmgp

Description: A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypothesis rngmgp.g 𝐺 = ( mulGrp ‘ 𝑅 )
Assertion rngmgp ( 𝑅 ∈ Rng → 𝐺 ∈ Smgrp )

Proof

Step Hyp Ref Expression
1 rngmgp.g 𝐺 = ( mulGrp ‘ 𝑅 )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 eqid ( +g𝑅 ) = ( +g𝑅 )
4 eqid ( .r𝑅 ) = ( .r𝑅 )
5 2 1 3 4 isrng ( 𝑅 ∈ Rng ↔ ( 𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r𝑅 ) ( 𝑦 ( +g𝑅 ) 𝑧 ) ) = ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( +g𝑅 ) ( 𝑥 ( .r𝑅 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r𝑅 ) 𝑧 ) ( +g𝑅 ) ( 𝑦 ( .r𝑅 ) 𝑧 ) ) ) ) )
6 5 simp2bi ( 𝑅 ∈ Rng → 𝐺 ∈ Smgrp )