Metamath Proof Explorer


Theorem rngcl

Description: Closure of the multiplication operation of a nonunital ring. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses rngcl.b 𝐵 = ( Base ‘ 𝑅 )
rngcl.t · = ( .r𝑅 )
Assertion rngcl ( ( 𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 rngcl.b 𝐵 = ( Base ‘ 𝑅 )
2 rngcl.t · = ( .r𝑅 )
3 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
4 3 rngmgp ( 𝑅 ∈ Rng → ( mulGrp ‘ 𝑅 ) ∈ Smgrp )
5 sgrpmgm ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp → ( mulGrp ‘ 𝑅 ) ∈ Mgm )
6 4 5 syl ( 𝑅 ∈ Rng → ( mulGrp ‘ 𝑅 ) ∈ Mgm )
7 3 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
8 3 2 mgpplusg · = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
9 7 8 mgmcl ( ( ( mulGrp ‘ 𝑅 ) ∈ Mgm ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 )
10 6 9 syl3an1 ( ( 𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 )