Step |
Hyp |
Ref |
Expression |
1 |
|
rngcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rngcl.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
4 |
3
|
rngmgp |
⊢ ( 𝑅 ∈ Rng → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
5 |
|
sgrpmgm |
⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp → ( mulGrp ‘ 𝑅 ) ∈ Mgm ) |
6 |
4 5
|
syl |
⊢ ( 𝑅 ∈ Rng → ( mulGrp ‘ 𝑅 ) ∈ Mgm ) |
7 |
3 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
8 |
3 2
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
9 |
7 8
|
mgmcl |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
10 |
6 9
|
syl3an1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |