Step |
Hyp |
Ref |
Expression |
1 |
|
rngz.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rngz.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
rngz.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
5 |
1 3
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
7 |
1 6 3
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ 0 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
8 |
4 5 7
|
syl2anc2 |
⊢ ( 𝑅 ∈ Ring → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
9 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
10 |
9
|
oveq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 ( +g ‘ 𝑅 ) 0 ) · 𝑋 ) = ( 0 · 𝑋 ) ) |
11 |
4 5
|
syl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
12 |
11
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
13 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
14 |
12 12 13
|
3jca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
15 |
1 6 2
|
ringdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 0 ( +g ‘ 𝑅 ) 0 ) · 𝑋 ) = ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) ( 0 · 𝑋 ) ) ) |
16 |
14 15
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 ( +g ‘ 𝑅 ) 0 ) · 𝑋 ) = ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) ( 0 · 𝑋 ) ) ) |
17 |
4
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
18 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
19 |
1 2
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) ∈ 𝐵 ) |
20 |
18 12 13 19
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) ∈ 𝐵 ) |
21 |
1 6 3
|
grprid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 0 · 𝑋 ) ∈ 𝐵 ) → ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) 0 ) = ( 0 · 𝑋 ) ) |
22 |
21
|
eqcomd |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 0 · 𝑋 ) ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) 0 ) ) |
23 |
17 20 22
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) 0 ) ) |
24 |
10 16 23
|
3eqtr3d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) ( 0 · 𝑋 ) ) = ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) 0 ) ) |
25 |
1 6
|
grplcan |
⊢ ( ( 𝑅 ∈ Grp ∧ ( ( 0 · 𝑋 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ ( 0 · 𝑋 ) ∈ 𝐵 ) ) → ( ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) ( 0 · 𝑋 ) ) = ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) 0 ) ↔ ( 0 · 𝑋 ) = 0 ) ) |
26 |
17 20 12 20 25
|
syl13anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) ( 0 · 𝑋 ) ) = ( ( 0 · 𝑋 ) ( +g ‘ 𝑅 ) 0 ) ↔ ( 0 · 𝑋 ) = 0 ) ) |
27 |
24 26
|
mpbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = 0 ) |