Metamath Proof Explorer


Theorem ringinvcl

Description: The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses unitinvcl.1 U=UnitR
unitinvcl.2 I=invrR
ringinvcl.3 B=BaseR
Assertion ringinvcl RRingXUIXB

Proof

Step Hyp Ref Expression
1 unitinvcl.1 U=UnitR
2 unitinvcl.2 I=invrR
3 ringinvcl.3 B=BaseR
4 1 2 unitinvcl RRingXUIXU
5 3 1 unitcl IXUIXB
6 4 5 syl RRingXUIXB