Metamath Proof Explorer


Definition df-invr

Description: Define multiplicative inverse. (Contributed by NM, 21-Sep-2011)

Ref Expression
Assertion df-invr invr=rVinvgmulGrpr𝑠Unitr

Detailed syntax breakdown

Step Hyp Ref Expression
0 cinvr classinvr
1 vr setvarr
2 cvv classV
3 cminusg classinvg
4 cmgp classmulGrp
5 1 cv setvarr
6 5 4 cfv classmulGrpr
7 cress class𝑠
8 cui classUnit
9 5 8 cfv classUnitr
10 6 9 7 co classmulGrpr𝑠Unitr
11 10 3 cfv classinvgmulGrpr𝑠Unitr
12 1 2 11 cmpt classrVinvgmulGrpr𝑠Unitr
13 0 12 wceq wffinvr=rVinvgmulGrpr𝑠Unitr