Description: Define multiplicative inverse. (Contributed by NM, 21-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-invr | ⊢ invr = ( 𝑟 ∈ V ↦ ( invg ‘ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cinvr | ⊢ invr | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cvv | ⊢ V | |
| 3 | cminusg | ⊢ invg | |
| 4 | cmgp | ⊢ mulGrp | |
| 5 | 1 | cv | ⊢ 𝑟 |
| 6 | 5 4 | cfv | ⊢ ( mulGrp ‘ 𝑟 ) |
| 7 | cress | ⊢ ↾s | |
| 8 | cui | ⊢ Unit | |
| 9 | 5 8 | cfv | ⊢ ( Unit ‘ 𝑟 ) |
| 10 | 6 9 7 | co | ⊢ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) |
| 11 | 10 3 | cfv | ⊢ ( invg ‘ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ) |
| 12 | 1 2 11 | cmpt | ⊢ ( 𝑟 ∈ V ↦ ( invg ‘ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ) ) |
| 13 | 0 12 | wceq | ⊢ invr = ( 𝑟 ∈ V ↦ ( invg ‘ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ) ) |