Metamath Proof Explorer


Theorem invrfval

Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011) (Revised by Mario Carneiro, 25-Dec-2014)

Ref Expression
Hypotheses invrfval.u U=UnitR
invrfval.g G=mulGrpR𝑠U
invrfval.i I=invrR
Assertion invrfval I=invgG

Proof

Step Hyp Ref Expression
1 invrfval.u U=UnitR
2 invrfval.g G=mulGrpR𝑠U
3 invrfval.i I=invrR
4 fveq2 r=RmulGrpr=mulGrpR
5 fveq2 r=RUnitr=UnitR
6 5 1 eqtr4di r=RUnitr=U
7 4 6 oveq12d r=RmulGrpr𝑠Unitr=mulGrpR𝑠U
8 7 2 eqtr4di r=RmulGrpr𝑠Unitr=G
9 8 fveq2d r=RinvgmulGrpr𝑠Unitr=invgG
10 df-invr invr=rVinvgmulGrpr𝑠Unitr
11 fvex invgGV
12 9 10 11 fvmpt RVinvrR=invgG
13 fvprc ¬RVinvrR=
14 base0 =Base
15 eqid invg=invg
16 14 15 grpinvfn invgFn
17 fn0 invgFninvg=
18 16 17 mpbi invg=
19 13 18 eqtr4di ¬RVinvrR=invg
20 fvprc ¬RVmulGrpR=
21 20 oveq1d ¬RVmulGrpR𝑠U=𝑠U
22 2 21 eqtrid ¬RVG=𝑠U
23 ress0 𝑠U=
24 22 23 eqtrdi ¬RVG=
25 24 fveq2d ¬RVinvgG=invg
26 19 25 eqtr4d ¬RVinvrR=invgG
27 12 26 pm2.61i invrR=invgG
28 3 27 eqtri I=invgG