Metamath Proof Explorer


Theorem grpinvfn

Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses grpinvfn.b B=BaseG
grpinvfn.n N=invgG
Assertion grpinvfn NFnB

Proof

Step Hyp Ref Expression
1 grpinvfn.b B=BaseG
2 grpinvfn.n N=invgG
3 riotaex ιyB|y+Gx=0GV
4 eqid +G=+G
5 eqid 0G=0G
6 1 4 5 2 grpinvfval N=xBιyB|y+Gx=0G
7 3 6 fnmpti NFnB