Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvfn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinvfn.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grpinvfn | ⊢ 𝑁 Fn 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinvfn.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 3 | riotaex | ⊢ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ∈ V | |
| 4 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 6 | 1 4 5 2 | grpinvfval | ⊢ 𝑁 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 7 | 3 6 | fnmpti | ⊢ 𝑁 Fn 𝐵 |