Metamath Proof Explorer


Theorem ress0

Description: All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion ress0 𝑠A=

Proof

Step Hyp Ref Expression
1 0ss A
2 0ex V
3 eqid 𝑠A=𝑠A
4 base0 =Base
5 3 4 ressid2 AVAV𝑠A=
6 1 2 5 mp3an12 AV𝑠A=
7 reldmress Reldom𝑠
8 7 ovprc2 ¬AV𝑠A=
9 6 8 pm2.61i 𝑠A=