Metamath Proof Explorer


Theorem ovprc2

Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypothesis ovprc1.1 Rel dom F
Assertion ovprc2 ¬ B V A F B =

Proof

Step Hyp Ref Expression
1 ovprc1.1 Rel dom F
2 simpr A V B V B V
3 1 ovprc ¬ A V B V A F B =
4 2 3 nsyl5 ¬ B V A F B =