Metamath Proof Explorer


Theorem ovprc2

Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypothesis ovprc1.1 ReldomF
Assertion ovprc2 ¬BVAFB=

Proof

Step Hyp Ref Expression
1 ovprc1.1 ReldomF
2 simpr AVBVBV
3 1 ovprc ¬AVBVAFB=
4 2 3 nsyl5 ¬BVAFB=