Metamath Proof Explorer


Theorem ovrcl

Description: Reverse closure for an operation value. (Contributed by Mario Carneiro, 5-May-2015)

Ref Expression
Hypothesis ovprc1.1 ReldomF
Assertion ovrcl CAFBAVBV

Proof

Step Hyp Ref Expression
1 ovprc1.1 ReldomF
2 n0i CAFB¬AFB=
3 1 ovprc ¬AVBVAFB=
4 2 3 nsyl2 CAFBAVBV