Description: Negation of a product in a ring. ( mulneg2 analog.) Compared with rngmneg2 , the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringneglmul.b | |
|
ringneglmul.t | |
||
ringneglmul.n | |
||
ringneglmul.r | |
||
ringneglmul.x | |
||
ringneglmul.y | |
||
Assertion | ringmneg2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringneglmul.b | |
|
2 | ringneglmul.t | |
|
3 | ringneglmul.n | |
|
4 | ringneglmul.r | |
|
5 | ringneglmul.x | |
|
6 | ringneglmul.y | |
|
7 | ringgrp | |
|
8 | 4 7 | syl | |
9 | eqid | |
|
10 | 1 9 | ringidcl | |
11 | 4 10 | syl | |
12 | 1 3 | grpinvcl | |
13 | 8 11 12 | syl2anc | |
14 | 1 2 | ringass | |
15 | 4 5 6 13 14 | syl13anc | |
16 | 1 2 | ringcl | |
17 | 4 5 6 16 | syl3anc | |
18 | 1 2 9 3 4 17 | ringnegr | |
19 | 1 2 9 3 4 6 | ringnegr | |
20 | 19 | oveq2d | |
21 | 15 18 20 | 3eqtr3rd | |