Metamath Proof Explorer


Theorem ringmneg2

Description: Negation of a product in a ring. ( mulneg2 analog.) Compared with rngmneg2 , the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)

Ref Expression
Hypotheses ringneglmul.b B=BaseR
ringneglmul.t ·˙=R
ringneglmul.n N=invgR
ringneglmul.r φRRing
ringneglmul.x φXB
ringneglmul.y φYB
Assertion ringmneg2 φX·˙NY=NX·˙Y

Proof

Step Hyp Ref Expression
1 ringneglmul.b B=BaseR
2 ringneglmul.t ·˙=R
3 ringneglmul.n N=invgR
4 ringneglmul.r φRRing
5 ringneglmul.x φXB
6 ringneglmul.y φYB
7 ringgrp RRingRGrp
8 4 7 syl φRGrp
9 eqid 1R=1R
10 1 9 ringidcl RRing1RB
11 4 10 syl φ1RB
12 1 3 grpinvcl RGrp1RBN1RB
13 8 11 12 syl2anc φN1RB
14 1 2 ringass RRingXBYBN1RBX·˙Y·˙N1R=X·˙Y·˙N1R
15 4 5 6 13 14 syl13anc φX·˙Y·˙N1R=X·˙Y·˙N1R
16 1 2 ringcl RRingXBYBX·˙YB
17 4 5 6 16 syl3anc φX·˙YB
18 1 2 9 3 4 17 ringnegr φX·˙Y·˙N1R=NX·˙Y
19 1 2 9 3 4 6 ringnegr φY·˙N1R=NY
20 19 oveq2d φX·˙Y·˙N1R=X·˙NY
21 15 18 20 3eqtr3rd φX·˙NY=NX·˙Y