Step |
Hyp |
Ref |
Expression |
1 |
|
ringneglmul.b |
|- B = ( Base ` R ) |
2 |
|
ringneglmul.t |
|- .x. = ( .r ` R ) |
3 |
|
ringneglmul.n |
|- N = ( invg ` R ) |
4 |
|
ringneglmul.r |
|- ( ph -> R e. Ring ) |
5 |
|
ringneglmul.x |
|- ( ph -> X e. B ) |
6 |
|
ringneglmul.y |
|- ( ph -> Y e. B ) |
7 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
8 |
4 7
|
syl |
|- ( ph -> R e. Grp ) |
9 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
10 |
1 9
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
11 |
4 10
|
syl |
|- ( ph -> ( 1r ` R ) e. B ) |
12 |
1 3
|
grpinvcl |
|- ( ( R e. Grp /\ ( 1r ` R ) e. B ) -> ( N ` ( 1r ` R ) ) e. B ) |
13 |
8 11 12
|
syl2anc |
|- ( ph -> ( N ` ( 1r ` R ) ) e. B ) |
14 |
1 2
|
ringass |
|- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ ( N ` ( 1r ` R ) ) e. B ) ) -> ( ( X .x. Y ) .x. ( N ` ( 1r ` R ) ) ) = ( X .x. ( Y .x. ( N ` ( 1r ` R ) ) ) ) ) |
15 |
4 5 6 13 14
|
syl13anc |
|- ( ph -> ( ( X .x. Y ) .x. ( N ` ( 1r ` R ) ) ) = ( X .x. ( Y .x. ( N ` ( 1r ` R ) ) ) ) ) |
16 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
17 |
4 5 6 16
|
syl3anc |
|- ( ph -> ( X .x. Y ) e. B ) |
18 |
1 2 9 3 4 17
|
rngnegr |
|- ( ph -> ( ( X .x. Y ) .x. ( N ` ( 1r ` R ) ) ) = ( N ` ( X .x. Y ) ) ) |
19 |
1 2 9 3 4 6
|
rngnegr |
|- ( ph -> ( Y .x. ( N ` ( 1r ` R ) ) ) = ( N ` Y ) ) |
20 |
19
|
oveq2d |
|- ( ph -> ( X .x. ( Y .x. ( N ` ( 1r ` R ) ) ) ) = ( X .x. ( N ` Y ) ) ) |
21 |
15 18 20
|
3eqtr3rd |
|- ( ph -> ( X .x. ( N ` Y ) ) = ( N ` ( X .x. Y ) ) ) |