| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringneglmul.b |
|- B = ( Base ` R ) |
| 2 |
|
ringneglmul.t |
|- .x. = ( .r ` R ) |
| 3 |
|
ringneglmul.n |
|- N = ( invg ` R ) |
| 4 |
|
ringneglmul.r |
|- ( ph -> R e. Ring ) |
| 5 |
|
ringneglmul.x |
|- ( ph -> X e. B ) |
| 6 |
|
ringneglmul.y |
|- ( ph -> Y e. B ) |
| 7 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 8 |
4 7
|
syl |
|- ( ph -> R e. Grp ) |
| 9 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 10 |
1 9
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 11 |
4 10
|
syl |
|- ( ph -> ( 1r ` R ) e. B ) |
| 12 |
1 3
|
grpinvcl |
|- ( ( R e. Grp /\ ( 1r ` R ) e. B ) -> ( N ` ( 1r ` R ) ) e. B ) |
| 13 |
8 11 12
|
syl2anc |
|- ( ph -> ( N ` ( 1r ` R ) ) e. B ) |
| 14 |
1 2
|
ringass |
|- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ ( N ` ( 1r ` R ) ) e. B ) ) -> ( ( X .x. Y ) .x. ( N ` ( 1r ` R ) ) ) = ( X .x. ( Y .x. ( N ` ( 1r ` R ) ) ) ) ) |
| 15 |
4 5 6 13 14
|
syl13anc |
|- ( ph -> ( ( X .x. Y ) .x. ( N ` ( 1r ` R ) ) ) = ( X .x. ( Y .x. ( N ` ( 1r ` R ) ) ) ) ) |
| 16 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 17 |
4 5 6 16
|
syl3anc |
|- ( ph -> ( X .x. Y ) e. B ) |
| 18 |
1 2 9 3 4 17
|
ringnegr |
|- ( ph -> ( ( X .x. Y ) .x. ( N ` ( 1r ` R ) ) ) = ( N ` ( X .x. Y ) ) ) |
| 19 |
1 2 9 3 4 6
|
ringnegr |
|- ( ph -> ( Y .x. ( N ` ( 1r ` R ) ) ) = ( N ` Y ) ) |
| 20 |
19
|
oveq2d |
|- ( ph -> ( X .x. ( Y .x. ( N ` ( 1r ` R ) ) ) ) = ( X .x. ( N ` Y ) ) ) |
| 21 |
15 18 20
|
3eqtr3rd |
|- ( ph -> ( X .x. ( N ` Y ) ) = ( N ` ( X .x. Y ) ) ) |