Step |
Hyp |
Ref |
Expression |
1 |
|
ringneglmul.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringneglmul.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
ringneglmul.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
4 |
|
ringneglmul.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
ringneglmul.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
ringneglmul.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
9 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
10 |
1 9
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
12 |
1 3
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
13 |
8 11 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
14 |
1 2
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) ) → ( ( 𝑋 · 𝑌 ) · ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑋 · ( 𝑌 · ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
15 |
4 5 6 13 14
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) · ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑋 · ( 𝑌 · ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
16 |
1 2
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
17 |
4 5 6 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
18 |
1 2 9 3 4 17
|
rngnegr |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) · ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) |
19 |
1 2 9 3 4 6
|
rngnegr |
⊢ ( 𝜑 → ( 𝑌 · ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑁 ‘ 𝑌 ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 · ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) ) |
21 |
15 18 20
|
3eqtr3rd |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) |