Metamath Proof Explorer


Theorem mulneg2

Description: The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004)

Ref Expression
Assertion mulneg2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) )

Proof

Step Hyp Ref Expression
1 mulneg1 ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - 𝐵 · 𝐴 ) = - ( 𝐵 · 𝐴 ) )
2 1 ancoms ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐵 · 𝐴 ) = - ( 𝐵 · 𝐴 ) )
3 negcl ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ )
4 mulcom ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = ( - 𝐵 · 𝐴 ) )
5 3 4 sylan2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = ( - 𝐵 · 𝐴 ) )
6 mulcom ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )
7 6 negeqd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴 · 𝐵 ) = - ( 𝐵 · 𝐴 ) )
8 2 5 7 3eqtr4d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) )