Metamath Proof Explorer


Theorem ringidcl

Description: The unit element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses ringidcl.b
|- B = ( Base ` R )
ringidcl.u
|- .1. = ( 1r ` R )
Assertion ringidcl
|- ( R e. Ring -> .1. e. B )

Proof

Step Hyp Ref Expression
1 ringidcl.b
 |-  B = ( Base ` R )
2 ringidcl.u
 |-  .1. = ( 1r ` R )
3 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
4 3 ringmgp
 |-  ( R e. Ring -> ( mulGrp ` R ) e. Mnd )
5 3 1 mgpbas
 |-  B = ( Base ` ( mulGrp ` R ) )
6 3 2 ringidval
 |-  .1. = ( 0g ` ( mulGrp ` R ) )
7 5 6 mndidcl
 |-  ( ( mulGrp ` R ) e. Mnd -> .1. e. B )
8 4 7 syl
 |-  ( R e. Ring -> .1. e. B )