Description: The unit element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringidcl.b | |- B = ( Base ` R ) |
|
ringidcl.u | |- .1. = ( 1r ` R ) |
||
Assertion | ringidcl | |- ( R e. Ring -> .1. e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringidcl.b | |- B = ( Base ` R ) |
|
2 | ringidcl.u | |- .1. = ( 1r ` R ) |
|
3 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
4 | 3 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
5 | 3 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
6 | 3 2 | ringidval | |- .1. = ( 0g ` ( mulGrp ` R ) ) |
7 | 5 6 | mndidcl | |- ( ( mulGrp ` R ) e. Mnd -> .1. e. B ) |
8 | 4 7 | syl | |- ( R e. Ring -> .1. e. B ) |