Metamath Proof Explorer


Theorem ringidcl

Description: The unit element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses ringidcl.b B = Base R
ringidcl.u 1 ˙ = 1 R
Assertion ringidcl R Ring 1 ˙ B

Proof

Step Hyp Ref Expression
1 ringidcl.b B = Base R
2 ringidcl.u 1 ˙ = 1 R
3 eqid mulGrp R = mulGrp R
4 3 ringmgp R Ring mulGrp R Mnd
5 3 1 mgpbas B = Base mulGrp R
6 3 2 ringidval 1 ˙ = 0 mulGrp R
7 5 6 mndidcl mulGrp R Mnd 1 ˙ B
8 4 7 syl R Ring 1 ˙ B