Step |
Hyp |
Ref |
Expression |
1 |
|
ringcl.b |
|- B = ( Base ` R ) |
2 |
|
ringcl.t |
|- .x. = ( .r ` R ) |
3 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
4 |
3
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
5 |
3 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
6 |
3 2
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
7 |
5 6
|
mndass |
|- ( ( ( mulGrp ` R ) e. Mnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) |
8 |
4 7
|
sylan |
|- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) |