Description: The multiplicative monoid of a product is the product of the multiplicative monoids of the factors. (Contributed by Mario Carneiro, 11-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prdsmgp.y | |
|
prdsmgp.m | |
||
prdsmgp.z | |
||
prdsmgp.i | |
||
prdsmgp.s | |
||
prdsmgp.r | |
||
Assertion | prdsmgp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsmgp.y | |
|
2 | prdsmgp.m | |
|
3 | prdsmgp.z | |
|
4 | prdsmgp.i | |
|
5 | prdsmgp.s | |
|
6 | prdsmgp.r | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 7 8 | mgpbas | |
10 | fvco2 | |
|
11 | 6 10 | sylan | |
12 | 11 | eqcomd | |
13 | 12 | fveq2d | |
14 | 9 13 | eqtrid | |
15 | 14 | ixpeq2dva | |
16 | eqid | |
|
17 | 2 16 | mgpbas | |
18 | 17 | eqcomi | |
19 | 1 18 5 4 6 | prdsbas2 | |
20 | eqid | |
|
21 | fnmgp | |
|
22 | ssv | |
|
23 | 22 | a1i | |
24 | fnco | |
|
25 | 21 6 23 24 | mp3an2i | |
26 | 3 20 5 4 25 | prdsbas2 | |
27 | 15 19 26 | 3eqtr4d | |
28 | eqid | |
|
29 | 2 28 | mgpplusg | |
30 | eqid | |
|
31 | eqid | |
|
32 | 30 31 | mgpplusg | |
33 | fvco2 | |
|
34 | 6 33 | sylan | |
35 | 34 | eqcomd | |
36 | 35 | fveq2d | |
37 | 32 36 | eqtrid | |
38 | 37 | oveqd | |
39 | 38 | mpteq2dva | |
40 | 27 27 39 | mpoeq123dv | |
41 | fnex | |
|
42 | 6 4 41 | syl2anc | |
43 | 6 | fndmd | |
44 | 1 5 42 18 43 28 | prdsmulr | |
45 | fnex | |
|
46 | 25 4 45 | syl2anc | |
47 | 25 | fndmd | |
48 | eqid | |
|
49 | 3 5 46 20 47 48 | prdsplusg | |
50 | 40 44 49 | 3eqtr4d | |
51 | 29 50 | eqtr3id | |
52 | 27 51 | jca | |