Metamath Proof Explorer


Theorem fnco

Description: Composition of two functions with domains as a function with domain. (Contributed by NM, 22-May-2006) (Proof shortened by AV, 20-Sep-2024)

Ref Expression
Assertion fnco FFnAGFnBranGAFGFnB

Proof

Step Hyp Ref Expression
1 fnfun GFnBFunG
2 fncofn FFnAFunGFGFnG-1A
3 1 2 sylan2 FFnAGFnBFGFnG-1A
4 3 3adant3 FFnAGFnBranGAFGFnG-1A
5 cnvimassrndm ranGAG-1A=domG
6 5 3ad2ant3 FFnAGFnBranGAG-1A=domG
7 fndm GFnBdomG=B
8 7 3ad2ant2 FFnAGFnBranGAdomG=B
9 6 8 eqtr2d FFnAGFnBranGAB=G-1A
10 9 fneq2d FFnAGFnBranGAFGFnBFGFnG-1A
11 4 10 mpbird FFnAGFnBranGAFGFnB