Description: If a group homomorphism F is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 13-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | f1ghm0to0.a | |
|
f1ghm0to0.b | |
||
f1ghm0to0.n | |
||
f1ghm0to0.0 | |
||
Assertion | f1ghm0to0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ghm0to0.a | |
|
2 | f1ghm0to0.b | |
|
3 | f1ghm0to0.n | |
|
4 | f1ghm0to0.0 | |
|
5 | 3 4 | ghmid | |
6 | 5 | 3ad2ant1 | |
7 | 6 | eqeq2d | |
8 | simp2 | |
|
9 | simp3 | |
|
10 | ghmgrp1 | |
|
11 | 1 3 | grpidcl | |
12 | 10 11 | syl | |
13 | 12 | 3ad2ant1 | |
14 | f1veqaeq | |
|
15 | 8 9 13 14 | syl12anc | |
16 | 7 15 | sylbird | |
17 | fveq2 | |
|
18 | 17 6 | sylan9eqr | |
19 | 18 | ex | |
20 | 16 19 | impbid | |