| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1ghm0to0.a |
|- A = ( Base ` R ) |
| 2 |
|
f1ghm0to0.b |
|- B = ( Base ` S ) |
| 3 |
|
f1ghm0to0.n |
|- N = ( 0g ` R ) |
| 4 |
|
f1ghm0to0.0 |
|- .0. = ( 0g ` S ) |
| 5 |
3 4
|
ghmid |
|- ( F e. ( R GrpHom S ) -> ( F ` N ) = .0. ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( F ` N ) = .0. ) |
| 7 |
6
|
eqeq2d |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = ( F ` N ) <-> ( F ` X ) = .0. ) ) |
| 8 |
|
simp2 |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> F : A -1-1-> B ) |
| 9 |
|
simp3 |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> X e. A ) |
| 10 |
|
ghmgrp1 |
|- ( F e. ( R GrpHom S ) -> R e. Grp ) |
| 11 |
1 3
|
grpidcl |
|- ( R e. Grp -> N e. A ) |
| 12 |
10 11
|
syl |
|- ( F e. ( R GrpHom S ) -> N e. A ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> N e. A ) |
| 14 |
|
f1veqaeq |
|- ( ( F : A -1-1-> B /\ ( X e. A /\ N e. A ) ) -> ( ( F ` X ) = ( F ` N ) -> X = N ) ) |
| 15 |
8 9 13 14
|
syl12anc |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = ( F ` N ) -> X = N ) ) |
| 16 |
7 15
|
sylbird |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = .0. -> X = N ) ) |
| 17 |
|
fveq2 |
|- ( X = N -> ( F ` X ) = ( F ` N ) ) |
| 18 |
17 6
|
sylan9eqr |
|- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) /\ X = N ) -> ( F ` X ) = .0. ) |
| 19 |
18
|
ex |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( X = N -> ( F ` X ) = .0. ) ) |
| 20 |
16 19
|
impbid |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ X e. A ) -> ( ( F ` X ) = .0. <-> X = N ) ) |