Metamath Proof Explorer


Theorem f1ghm0to0

Description: If a group homomorphism F is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 13-May-2023)

Ref Expression
Hypotheses f1ghm0to0.a 𝐴 = ( Base ‘ 𝑅 )
f1ghm0to0.b 𝐵 = ( Base ‘ 𝑆 )
f1ghm0to0.n 𝑁 = ( 0g𝑆 )
f1ghm0to0.1 0 = ( 0g𝑅 )
Assertion f1ghm0to0 ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) )

Proof

Step Hyp Ref Expression
1 f1ghm0to0.a 𝐴 = ( Base ‘ 𝑅 )
2 f1ghm0to0.b 𝐵 = ( Base ‘ 𝑆 )
3 f1ghm0to0.n 𝑁 = ( 0g𝑆 )
4 f1ghm0to0.1 0 = ( 0g𝑅 )
5 4 3 ghmid ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹0 ) = 𝑁 )
6 5 3ad2ant1 ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → ( 𝐹0 ) = 𝑁 )
7 6 eqeq2d ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → ( ( 𝐹𝑋 ) = ( 𝐹0 ) ↔ ( 𝐹𝑋 ) = 𝑁 ) )
8 simp2 ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → 𝐹 : 𝐴1-1𝐵 )
9 simp3 ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → 𝑋𝐴 )
10 ghmgrp1 ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑅 ∈ Grp )
11 1 4 grpidcl ( 𝑅 ∈ Grp → 0𝐴 )
12 10 11 syl ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 0𝐴 )
13 12 3ad2ant1 ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → 0𝐴 )
14 f1veqaeq ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝑋𝐴0𝐴 ) ) → ( ( 𝐹𝑋 ) = ( 𝐹0 ) → 𝑋 = 0 ) )
15 8 9 13 14 syl12anc ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → ( ( 𝐹𝑋 ) = ( 𝐹0 ) → 𝑋 = 0 ) )
16 7 15 sylbird ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) )
17 fveq2 ( 𝑋 = 0 → ( 𝐹𝑋 ) = ( 𝐹0 ) )
18 17 6 sylan9eqr ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) ∧ 𝑋 = 0 ) → ( 𝐹𝑋 ) = 𝑁 )
19 18 ex ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → ( 𝑋 = 0 → ( 𝐹𝑋 ) = 𝑁 ) )
20 16 19 impbid ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) )