Metamath Proof Explorer


Theorem f1rhm0to0ALT

Description: Alternate proof for f1ghm0to0 . Using ghmf1 does not make the proof shorter and requires disjoint variable restrictions! (Contributed by AV, 24-Oct-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses gim0to0ALT.a 𝐴 = ( Base ‘ 𝑅 )
gim0to0ALT.b 𝐵 = ( Base ‘ 𝑆 )
gim0to0ALT.n 𝑁 = ( 0g𝑆 )
gim0to0ALT.0 0 = ( 0g𝑅 )
Assertion f1rhm0to0ALT ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) )

Proof

Step Hyp Ref Expression
1 gim0to0ALT.a 𝐴 = ( Base ‘ 𝑅 )
2 gim0to0ALT.b 𝐵 = ( Base ‘ 𝑆 )
3 gim0to0ALT.n 𝑁 = ( 0g𝑆 )
4 gim0to0ALT.0 0 = ( 0g𝑅 )
5 rhmghm ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
6 5 adantr ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑋𝐴 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
7 1 2 4 3 ghmf1 ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : 𝐴1-1𝐵 ↔ ∀ 𝑥𝐴 ( ( 𝐹𝑥 ) = 𝑁𝑥 = 0 ) ) )
8 6 7 syl ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑋𝐴 ) → ( 𝐹 : 𝐴1-1𝐵 ↔ ∀ 𝑥𝐴 ( ( 𝐹𝑥 ) = 𝑁𝑥 = 0 ) ) )
9 fveq2 ( 𝑥 = 𝑋 → ( 𝐹𝑥 ) = ( 𝐹𝑋 ) )
10 9 eqeq1d ( 𝑥 = 𝑋 → ( ( 𝐹𝑥 ) = 𝑁 ↔ ( 𝐹𝑋 ) = 𝑁 ) )
11 eqeq1 ( 𝑥 = 𝑋 → ( 𝑥 = 0𝑋 = 0 ) )
12 10 11 imbi12d ( 𝑥 = 𝑋 → ( ( ( 𝐹𝑥 ) = 𝑁𝑥 = 0 ) ↔ ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) ) )
13 12 rspcv ( 𝑋𝐴 → ( ∀ 𝑥𝐴 ( ( 𝐹𝑥 ) = 𝑁𝑥 = 0 ) → ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) ) )
14 13 adantl ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑋𝐴 ) → ( ∀ 𝑥𝐴 ( ( 𝐹𝑥 ) = 𝑁𝑥 = 0 ) → ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) ) )
15 8 14 sylbid ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑋𝐴 ) → ( 𝐹 : 𝐴1-1𝐵 → ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) ) )
16 15 ex ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝑋𝐴 → ( 𝐹 : 𝐴1-1𝐵 → ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) ) ) )
17 16 com23 ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 : 𝐴1-1𝐵 → ( 𝑋𝐴 → ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) ) ) )
18 17 3imp ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) )
19 fveq2 ( 𝑋 = 0 → ( 𝐹𝑋 ) = ( 𝐹0 ) )
20 4 3 ghmid ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹0 ) = 𝑁 )
21 5 20 syl ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹0 ) = 𝑁 )
22 21 3ad2ant1 ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → ( 𝐹0 ) = 𝑁 )
23 19 22 sylan9eqr ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) ∧ 𝑋 = 0 ) → ( 𝐹𝑋 ) = 𝑁 )
24 23 ex ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → ( 𝑋 = 0 → ( 𝐹𝑋 ) = 𝑁 ) )
25 18 24 impbid ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑋𝐴 ) → ( ( 𝐹𝑋 ) = 𝑁𝑋 = 0 ) )