| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1ghm0to0.a |
|- A = ( Base ` R ) |
| 2 |
|
f1ghm0to0.b |
|- B = ( Base ` S ) |
| 3 |
|
f1ghm0to0.n |
|- N = ( 0g ` R ) |
| 4 |
|
f1ghm0to0.0 |
|- .0. = ( 0g ` S ) |
| 5 |
1 2 3 4
|
f1ghm0to0 |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ x e. A ) -> ( ( F ` x ) = .0. <-> x = N ) ) |
| 6 |
5
|
3expa |
|- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. A ) -> ( ( F ` x ) = .0. <-> x = N ) ) |
| 7 |
6
|
biimpd |
|- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. A ) -> ( ( F ` x ) = .0. -> x = N ) ) |
| 8 |
7
|
ralrimiva |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> A. x e. A ( ( F ` x ) = .0. -> x = N ) ) |
| 9 |
1 2
|
ghmf |
|- ( F e. ( R GrpHom S ) -> F : A --> B ) |
| 10 |
9
|
adantr |
|- ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) -> F : A --> B ) |
| 11 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
| 12 |
|
eqid |
|- ( -g ` S ) = ( -g ` S ) |
| 13 |
1 11 12
|
ghmsub |
|- ( ( F e. ( R GrpHom S ) /\ y e. A /\ z e. A ) -> ( F ` ( y ( -g ` R ) z ) ) = ( ( F ` y ) ( -g ` S ) ( F ` z ) ) ) |
| 14 |
13
|
3expb |
|- ( ( F e. ( R GrpHom S ) /\ ( y e. A /\ z e. A ) ) -> ( F ` ( y ( -g ` R ) z ) ) = ( ( F ` y ) ( -g ` S ) ( F ` z ) ) ) |
| 15 |
14
|
adantlr |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( F ` ( y ( -g ` R ) z ) ) = ( ( F ` y ) ( -g ` S ) ( F ` z ) ) ) |
| 16 |
15
|
eqeq1d |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( F ` ( y ( -g ` R ) z ) ) = .0. <-> ( ( F ` y ) ( -g ` S ) ( F ` z ) ) = .0. ) ) |
| 17 |
|
fveqeq2 |
|- ( x = ( y ( -g ` R ) z ) -> ( ( F ` x ) = .0. <-> ( F ` ( y ( -g ` R ) z ) ) = .0. ) ) |
| 18 |
|
eqeq1 |
|- ( x = ( y ( -g ` R ) z ) -> ( x = N <-> ( y ( -g ` R ) z ) = N ) ) |
| 19 |
17 18
|
imbi12d |
|- ( x = ( y ( -g ` R ) z ) -> ( ( ( F ` x ) = .0. -> x = N ) <-> ( ( F ` ( y ( -g ` R ) z ) ) = .0. -> ( y ( -g ` R ) z ) = N ) ) ) |
| 20 |
|
simplr |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> A. x e. A ( ( F ` x ) = .0. -> x = N ) ) |
| 21 |
|
ghmgrp1 |
|- ( F e. ( R GrpHom S ) -> R e. Grp ) |
| 22 |
21
|
adantr |
|- ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) -> R e. Grp ) |
| 23 |
1 11
|
grpsubcl |
|- ( ( R e. Grp /\ y e. A /\ z e. A ) -> ( y ( -g ` R ) z ) e. A ) |
| 24 |
23
|
3expb |
|- ( ( R e. Grp /\ ( y e. A /\ z e. A ) ) -> ( y ( -g ` R ) z ) e. A ) |
| 25 |
22 24
|
sylan |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( y ( -g ` R ) z ) e. A ) |
| 26 |
19 20 25
|
rspcdva |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( F ` ( y ( -g ` R ) z ) ) = .0. -> ( y ( -g ` R ) z ) = N ) ) |
| 27 |
16 26
|
sylbird |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( ( F ` y ) ( -g ` S ) ( F ` z ) ) = .0. -> ( y ( -g ` R ) z ) = N ) ) |
| 28 |
|
ghmgrp2 |
|- ( F e. ( R GrpHom S ) -> S e. Grp ) |
| 29 |
28
|
ad2antrr |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> S e. Grp ) |
| 30 |
9
|
ad2antrr |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> F : A --> B ) |
| 31 |
|
simprl |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> y e. A ) |
| 32 |
30 31
|
ffvelcdmd |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( F ` y ) e. B ) |
| 33 |
|
simprr |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> z e. A ) |
| 34 |
30 33
|
ffvelcdmd |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( F ` z ) e. B ) |
| 35 |
2 4 12
|
grpsubeq0 |
|- ( ( S e. Grp /\ ( F ` y ) e. B /\ ( F ` z ) e. B ) -> ( ( ( F ` y ) ( -g ` S ) ( F ` z ) ) = .0. <-> ( F ` y ) = ( F ` z ) ) ) |
| 36 |
29 32 34 35
|
syl3anc |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( ( F ` y ) ( -g ` S ) ( F ` z ) ) = .0. <-> ( F ` y ) = ( F ` z ) ) ) |
| 37 |
21
|
ad2antrr |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> R e. Grp ) |
| 38 |
1 3 11
|
grpsubeq0 |
|- ( ( R e. Grp /\ y e. A /\ z e. A ) -> ( ( y ( -g ` R ) z ) = N <-> y = z ) ) |
| 39 |
37 31 33 38
|
syl3anc |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( y ( -g ` R ) z ) = N <-> y = z ) ) |
| 40 |
27 36 39
|
3imtr3d |
|- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
| 41 |
40
|
ralrimivva |
|- ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) -> A. y e. A A. z e. A ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
| 42 |
|
dff13 |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ A. y e. A A. z e. A ( ( F ` y ) = ( F ` z ) -> y = z ) ) ) |
| 43 |
10 41 42
|
sylanbrc |
|- ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) -> F : A -1-1-> B ) |
| 44 |
8 43
|
impbida |
|- ( F e. ( R GrpHom S ) -> ( F : A -1-1-> B <-> A. x e. A ( ( F ` x ) = .0. -> x = N ) ) ) |