Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008) (Revised by Mario Carneiro, 13-Jan-2015) (Proof shortened by AV, 4-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | f1ghm0to0.a | |
|
f1ghm0to0.b | |
||
f1ghm0to0.n | |
||
f1ghm0to0.0 | |
||
Assertion | ghmf1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ghm0to0.a | |
|
2 | f1ghm0to0.b | |
|
3 | f1ghm0to0.n | |
|
4 | f1ghm0to0.0 | |
|
5 | 1 2 3 4 | f1ghm0to0 | |
6 | 5 | 3expa | |
7 | 6 | biimpd | |
8 | 7 | ralrimiva | |
9 | 1 2 | ghmf | |
10 | 9 | adantr | |
11 | eqid | |
|
12 | eqid | |
|
13 | 1 11 12 | ghmsub | |
14 | 13 | 3expb | |
15 | 14 | adantlr | |
16 | 15 | eqeq1d | |
17 | fveqeq2 | |
|
18 | eqeq1 | |
|
19 | 17 18 | imbi12d | |
20 | simplr | |
|
21 | ghmgrp1 | |
|
22 | 21 | adantr | |
23 | 1 11 | grpsubcl | |
24 | 23 | 3expb | |
25 | 22 24 | sylan | |
26 | 19 20 25 | rspcdva | |
27 | 16 26 | sylbird | |
28 | ghmgrp2 | |
|
29 | 28 | ad2antrr | |
30 | 9 | ad2antrr | |
31 | simprl | |
|
32 | 30 31 | ffvelcdmd | |
33 | simprr | |
|
34 | 30 33 | ffvelcdmd | |
35 | 2 4 12 | grpsubeq0 | |
36 | 29 32 34 35 | syl3anc | |
37 | 21 | ad2antrr | |
38 | 1 3 11 | grpsubeq0 | |
39 | 37 31 33 38 | syl3anc | |
40 | 27 36 39 | 3imtr3d | |
41 | 40 | ralrimivva | |
42 | dff13 | |
|
43 | 10 41 42 | sylanbrc | |
44 | 8 43 | impbida | |