Metamath Proof Explorer


Theorem ghmf1

Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008) (Revised by Mario Carneiro, 13-Jan-2015) (Proof shortened by AV, 4-Apr-2025)

Ref Expression
Hypotheses f1ghm0to0.a A=BaseR
f1ghm0to0.b B=BaseS
f1ghm0to0.n N=0R
f1ghm0to0.0 0˙=0S
Assertion ghmf1 FRGrpHomSF:A1-1BxAFx=0˙x=N

Proof

Step Hyp Ref Expression
1 f1ghm0to0.a A=BaseR
2 f1ghm0to0.b B=BaseS
3 f1ghm0to0.n N=0R
4 f1ghm0to0.0 0˙=0S
5 1 2 3 4 f1ghm0to0 FRGrpHomSF:A1-1BxAFx=0˙x=N
6 5 3expa FRGrpHomSF:A1-1BxAFx=0˙x=N
7 6 biimpd FRGrpHomSF:A1-1BxAFx=0˙x=N
8 7 ralrimiva FRGrpHomSF:A1-1BxAFx=0˙x=N
9 1 2 ghmf FRGrpHomSF:AB
10 9 adantr FRGrpHomSxAFx=0˙x=NF:AB
11 eqid -R=-R
12 eqid -S=-S
13 1 11 12 ghmsub FRGrpHomSyAzAFy-Rz=Fy-SFz
14 13 3expb FRGrpHomSyAzAFy-Rz=Fy-SFz
15 14 adantlr FRGrpHomSxAFx=0˙x=NyAzAFy-Rz=Fy-SFz
16 15 eqeq1d FRGrpHomSxAFx=0˙x=NyAzAFy-Rz=0˙Fy-SFz=0˙
17 fveqeq2 x=y-RzFx=0˙Fy-Rz=0˙
18 eqeq1 x=y-Rzx=Ny-Rz=N
19 17 18 imbi12d x=y-RzFx=0˙x=NFy-Rz=0˙y-Rz=N
20 simplr FRGrpHomSxAFx=0˙x=NyAzAxAFx=0˙x=N
21 ghmgrp1 FRGrpHomSRGrp
22 21 adantr FRGrpHomSxAFx=0˙x=NRGrp
23 1 11 grpsubcl RGrpyAzAy-RzA
24 23 3expb RGrpyAzAy-RzA
25 22 24 sylan FRGrpHomSxAFx=0˙x=NyAzAy-RzA
26 19 20 25 rspcdva FRGrpHomSxAFx=0˙x=NyAzAFy-Rz=0˙y-Rz=N
27 16 26 sylbird FRGrpHomSxAFx=0˙x=NyAzAFy-SFz=0˙y-Rz=N
28 ghmgrp2 FRGrpHomSSGrp
29 28 ad2antrr FRGrpHomSxAFx=0˙x=NyAzASGrp
30 9 ad2antrr FRGrpHomSxAFx=0˙x=NyAzAF:AB
31 simprl FRGrpHomSxAFx=0˙x=NyAzAyA
32 30 31 ffvelcdmd FRGrpHomSxAFx=0˙x=NyAzAFyB
33 simprr FRGrpHomSxAFx=0˙x=NyAzAzA
34 30 33 ffvelcdmd FRGrpHomSxAFx=0˙x=NyAzAFzB
35 2 4 12 grpsubeq0 SGrpFyBFzBFy-SFz=0˙Fy=Fz
36 29 32 34 35 syl3anc FRGrpHomSxAFx=0˙x=NyAzAFy-SFz=0˙Fy=Fz
37 21 ad2antrr FRGrpHomSxAFx=0˙x=NyAzARGrp
38 1 3 11 grpsubeq0 RGrpyAzAy-Rz=Ny=z
39 37 31 33 38 syl3anc FRGrpHomSxAFx=0˙x=NyAzAy-Rz=Ny=z
40 27 36 39 3imtr3d FRGrpHomSxAFx=0˙x=NyAzAFy=Fzy=z
41 40 ralrimivva FRGrpHomSxAFx=0˙x=NyAzAFy=Fzy=z
42 dff13 F:A1-1BF:AByAzAFy=Fzy=z
43 10 41 42 sylanbrc FRGrpHomSxAFx=0˙x=NF:A1-1B
44 8 43 impbida FRGrpHomSF:A1-1BxAFx=0˙x=N