Metamath Proof Explorer


Theorem ghmsub

Description: Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghmsub.b B=BaseS
ghmsub.m -˙=-S
ghmsub.n N=-T
Assertion ghmsub FSGrpHomTUBVBFU-˙V=FUNFV

Proof

Step Hyp Ref Expression
1 ghmsub.b B=BaseS
2 ghmsub.m -˙=-S
3 ghmsub.n N=-T
4 ghmgrp1 FSGrpHomTSGrp
5 4 3ad2ant1 FSGrpHomTUBVBSGrp
6 simp3 FSGrpHomTUBVBVB
7 eqid invgS=invgS
8 1 7 grpinvcl SGrpVBinvgSVB
9 5 6 8 syl2anc FSGrpHomTUBVBinvgSVB
10 eqid +S=+S
11 eqid +T=+T
12 1 10 11 ghmlin FSGrpHomTUBinvgSVBFU+SinvgSV=FU+TFinvgSV
13 9 12 syld3an3 FSGrpHomTUBVBFU+SinvgSV=FU+TFinvgSV
14 eqid invgT=invgT
15 1 7 14 ghminv FSGrpHomTVBFinvgSV=invgTFV
16 15 3adant2 FSGrpHomTUBVBFinvgSV=invgTFV
17 16 oveq2d FSGrpHomTUBVBFU+TFinvgSV=FU+TinvgTFV
18 13 17 eqtrd FSGrpHomTUBVBFU+SinvgSV=FU+TinvgTFV
19 1 10 7 2 grpsubval UBVBU-˙V=U+SinvgSV
20 19 fveq2d UBVBFU-˙V=FU+SinvgSV
21 20 3adant1 FSGrpHomTUBVBFU-˙V=FU+SinvgSV
22 eqid BaseT=BaseT
23 1 22 ghmf FSGrpHomTF:BBaseT
24 ffvelcdm F:BBaseTUBFUBaseT
25 ffvelcdm F:BBaseTVBFVBaseT
26 24 25 anim12dan F:BBaseTUBVBFUBaseTFVBaseT
27 23 26 sylan FSGrpHomTUBVBFUBaseTFVBaseT
28 27 3impb FSGrpHomTUBVBFUBaseTFVBaseT
29 22 11 14 3 grpsubval FUBaseTFVBaseTFUNFV=FU+TinvgTFV
30 28 29 syl FSGrpHomTUBVBFUNFV=FU+TinvgTFV
31 18 21 30 3eqtr4d FSGrpHomTUBVBFU-˙V=FUNFV