Metamath Proof Explorer


Theorem ghminv

Description: A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghminv.b B=BaseS
ghminv.y M=invgS
ghminv.z N=invgT
Assertion ghminv FSGrpHomTXBFMX=NFX

Proof

Step Hyp Ref Expression
1 ghminv.b B=BaseS
2 ghminv.y M=invgS
3 ghminv.z N=invgT
4 ghmgrp1 FSGrpHomTSGrp
5 eqid +S=+S
6 eqid 0S=0S
7 1 5 6 2 grprinv SGrpXBX+SMX=0S
8 4 7 sylan FSGrpHomTXBX+SMX=0S
9 8 fveq2d FSGrpHomTXBFX+SMX=F0S
10 1 2 grpinvcl SGrpXBMXB
11 4 10 sylan FSGrpHomTXBMXB
12 eqid +T=+T
13 1 5 12 ghmlin FSGrpHomTXBMXBFX+SMX=FX+TFMX
14 11 13 mpd3an3 FSGrpHomTXBFX+SMX=FX+TFMX
15 eqid 0T=0T
16 6 15 ghmid FSGrpHomTF0S=0T
17 16 adantr FSGrpHomTXBF0S=0T
18 9 14 17 3eqtr3d FSGrpHomTXBFX+TFMX=0T
19 ghmgrp2 FSGrpHomTTGrp
20 19 adantr FSGrpHomTXBTGrp
21 eqid BaseT=BaseT
22 1 21 ghmf FSGrpHomTF:BBaseT
23 22 ffvelcdmda FSGrpHomTXBFXBaseT
24 22 adantr FSGrpHomTXBF:BBaseT
25 24 11 ffvelcdmd FSGrpHomTXBFMXBaseT
26 21 12 15 3 grpinvid1 TGrpFXBaseTFMXBaseTNFX=FMXFX+TFMX=0T
27 20 23 25 26 syl3anc FSGrpHomTXBNFX=FMXFX+TFMX=0T
28 18 27 mpbird FSGrpHomTXBNFX=FMX
29 28 eqcomd FSGrpHomTXBFMX=NFX