Metamath Proof Explorer


Theorem ghmf

Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghmf.x X=BaseS
ghmf.y Y=BaseT
Assertion ghmf FSGrpHomTF:XY

Proof

Step Hyp Ref Expression
1 ghmf.x X=BaseS
2 ghmf.y Y=BaseT
3 eqid +S=+S
4 eqid +T=+T
5 1 2 3 4 isghm FSGrpHomTSGrpTGrpF:XYyXxXFy+Sx=Fy+TFx
6 5 simprbi FSGrpHomTF:XYyXxXFy+Sx=Fy+TFx
7 6 simpld FSGrpHomTF:XY