Metamath Proof Explorer


Theorem grpsubval

Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 13-Dec-2014)

Ref Expression
Hypotheses grpsubval.b B = Base G
grpsubval.p + ˙ = + G
grpsubval.i I = inv g G
grpsubval.m - ˙ = - G
Assertion grpsubval X B Y B X - ˙ Y = X + ˙ I Y

Proof

Step Hyp Ref Expression
1 grpsubval.b B = Base G
2 grpsubval.p + ˙ = + G
3 grpsubval.i I = inv g G
4 grpsubval.m - ˙ = - G
5 oveq1 x = X x + ˙ I y = X + ˙ I y
6 fveq2 y = Y I y = I Y
7 6 oveq2d y = Y X + ˙ I y = X + ˙ I Y
8 1 2 3 4 grpsubfval - ˙ = x B , y B x + ˙ I y
9 ovex X + ˙ I Y V
10 5 7 8 9 ovmpo X B Y B X - ˙ Y = X + ˙ I Y