Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 13-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpsubval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
grpsubval.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
grpsubval.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
grpsubval.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
Assertion | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( 𝐼 ‘ 𝑌 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
2 | grpsubval.p | ⊢ + = ( +g ‘ 𝐺 ) | |
3 | grpsubval.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
4 | grpsubval.m | ⊢ − = ( -g ‘ 𝐺 ) | |
5 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 + ( 𝐼 ‘ 𝑦 ) ) = ( 𝑋 + ( 𝐼 ‘ 𝑦 ) ) ) | |
6 | fveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝐼 ‘ 𝑦 ) = ( 𝐼 ‘ 𝑌 ) ) | |
7 | 6 | oveq2d | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 + ( 𝐼 ‘ 𝑦 ) ) = ( 𝑋 + ( 𝐼 ‘ 𝑌 ) ) ) |
8 | 1 2 3 4 | grpsubfval | ⊢ − = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + ( 𝐼 ‘ 𝑦 ) ) ) |
9 | ovex | ⊢ ( 𝑋 + ( 𝐼 ‘ 𝑌 ) ) ∈ V | |
10 | 5 7 8 9 | ovmpo | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( 𝐼 ‘ 𝑌 ) ) ) |