Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grpsubcl
Next ⟩
grpsubrcan
Metamath Proof Explorer
Ascii
Unicode
Theorem
grpsubcl
Description:
Closure of group subtraction.
(Contributed by
NM
, 31-Mar-2014)
Ref
Expression
Hypotheses
grpsubcl.b
⊢
B
=
Base
G
grpsubcl.m
⊢
-
˙
=
-
G
Assertion
grpsubcl
⊢
G
∈
Grp
∧
X
∈
B
∧
Y
∈
B
→
X
-
˙
Y
∈
B
Proof
Step
Hyp
Ref
Expression
1
grpsubcl.b
⊢
B
=
Base
G
2
grpsubcl.m
⊢
-
˙
=
-
G
3
1
2
grpsubf
⊢
G
∈
Grp
→
-
˙
:
B
×
B
⟶
B
4
fovcdm
⊢
-
˙
:
B
×
B
⟶
B
∧
X
∈
B
∧
Y
∈
B
→
X
-
˙
Y
∈
B
5
3
4
syl3an1
⊢
G
∈
Grp
∧
X
∈
B
∧
Y
∈
B
→
X
-
˙
Y
∈
B