Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubid.b |
|- B = ( Base ` G ) |
2 |
|
grpsubid.o |
|- .0. = ( 0g ` G ) |
3 |
|
grpsubid.m |
|- .- = ( -g ` G ) |
4 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
5 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
6 |
1 4 5 3
|
grpsubval |
|- ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
7 |
6
|
3adant1 |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
8 |
7
|
eqeq1d |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .- Y ) = .0. <-> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) = .0. ) ) |
9 |
|
simp1 |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> G e. Grp ) |
10 |
1 5
|
grpinvcl |
|- ( ( G e. Grp /\ Y e. B ) -> ( ( invg ` G ) ` Y ) e. B ) |
11 |
10
|
3adant2 |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( invg ` G ) ` Y ) e. B ) |
12 |
|
simp2 |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> X e. B ) |
13 |
1 4 2 5
|
grpinvid2 |
|- ( ( G e. Grp /\ ( ( invg ` G ) ` Y ) e. B /\ X e. B ) -> ( ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) = X <-> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) = .0. ) ) |
14 |
9 11 12 13
|
syl3anc |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) = X <-> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) = .0. ) ) |
15 |
1 5
|
grpinvinv |
|- ( ( G e. Grp /\ Y e. B ) -> ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) = Y ) |
16 |
15
|
3adant2 |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) = Y ) |
17 |
16
|
eqeq1d |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) = X <-> Y = X ) ) |
18 |
|
eqcom |
|- ( Y = X <-> X = Y ) |
19 |
17 18
|
bitrdi |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) = X <-> X = Y ) ) |
20 |
8 14 19
|
3bitr2d |
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .- Y ) = .0. <-> X = Y ) ) |