Metamath Proof Explorer


Theorem mulgass3

Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses mulgass3.b B = Base R
mulgass3.m · ˙ = R
mulgass3.t × ˙ = R
Assertion mulgass3 R Ring N X B Y B X × ˙ N · ˙ Y = N · ˙ X × ˙ Y

Proof

Step Hyp Ref Expression
1 mulgass3.b B = Base R
2 mulgass3.m · ˙ = R
3 mulgass3.t × ˙ = R
4 eqid opp r R = opp r R
5 4 opprring R Ring opp r R Ring
6 5 adantr R Ring N X B Y B opp r R Ring
7 simpr1 R Ring N X B Y B N
8 simpr3 R Ring N X B Y B Y B
9 simpr2 R Ring N X B Y B X B
10 4 1 opprbas B = Base opp r R
11 eqid opp r R = opp r R
12 eqid opp r R = opp r R
13 10 11 12 mulgass2 opp r R Ring N Y B X B N opp r R Y opp r R X = N opp r R Y opp r R X
14 6 7 8 9 13 syl13anc R Ring N X B Y B N opp r R Y opp r R X = N opp r R Y opp r R X
15 1 3 4 12 opprmul N opp r R Y opp r R X = X × ˙ N opp r R Y
16 1 3 4 12 opprmul Y opp r R X = X × ˙ Y
17 16 oveq2i N opp r R Y opp r R X = N opp r R X × ˙ Y
18 14 15 17 3eqtr3g R Ring N X B Y B X × ˙ N opp r R Y = N opp r R X × ˙ Y
19 1 a1i R Ring N X B Y B B = Base R
20 10 a1i R Ring N X B Y B B = Base opp r R
21 ssv B V
22 21 a1i R Ring N X B Y B B V
23 ovexd R Ring N X B Y B x V y V x + R y V
24 eqid + R = + R
25 4 24 oppradd + R = + opp r R
26 25 oveqi x + R y = x + opp r R y
27 26 a1i R Ring N X B Y B x V y V x + R y = x + opp r R y
28 2 11 19 20 22 23 27 mulgpropd R Ring N X B Y B · ˙ = opp r R
29 28 oveqd R Ring N X B Y B N · ˙ Y = N opp r R Y
30 29 oveq2d R Ring N X B Y B X × ˙ N · ˙ Y = X × ˙ N opp r R Y
31 28 oveqd R Ring N X B Y B N · ˙ X × ˙ Y = N opp r R X × ˙ Y
32 18 30 31 3eqtr4d R Ring N X B Y B X × ˙ N · ˙ Y = N · ˙ X × ˙ Y