Description: An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Aug-2015) (Proof shortened by AV, 30-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opprbas.1 | |
|
Assertion | opprring | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprbas.1 | |
|
2 | ringrng | |
|
3 | 1 | opprrng | |
4 | 2 3 | syl | |
5 | oveq1 | |
|
6 | 5 | eqeq1d | |
7 | 6 | ovanraleqv | |
8 | eqid | |
|
9 | eqid | |
|
10 | 8 9 | ringidcl | |
11 | eqid | |
|
12 | eqid | |
|
13 | 8 11 1 12 | opprmul | |
14 | 8 11 9 | ringridm | |
15 | 13 14 | eqtrid | |
16 | 8 11 1 12 | opprmul | |
17 | 8 11 9 | ringlidm | |
18 | 16 17 | eqtrid | |
19 | 15 18 | jca | |
20 | 19 | ralrimiva | |
21 | 7 10 20 | rspcedvdw | |
22 | 1 8 | opprbas | |
23 | 22 12 | isringrng | |
24 | 4 21 23 | sylanbrc | |