Metamath Proof Explorer


Theorem opprring

Description: An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Aug-2015) (Proof shortened by AV, 30-Mar-2025)

Ref Expression
Hypothesis opprbas.1 O=opprR
Assertion opprring RRingORing

Proof

Step Hyp Ref Expression
1 opprbas.1 O=opprR
2 ringrng RRingRRng
3 1 opprrng RRngORng
4 2 3 syl RRingORng
5 oveq1 z=1RzOx=1ROx
6 5 eqeq1d z=1RzOx=x1ROx=x
7 6 ovanraleqv z=1RxBaseRzOx=xxOz=xxBaseR1ROx=xxO1R=x
8 eqid BaseR=BaseR
9 eqid 1R=1R
10 8 9 ringidcl RRing1RBaseR
11 eqid R=R
12 eqid O=O
13 8 11 1 12 opprmul 1ROx=xR1R
14 8 11 9 ringridm RRingxBaseRxR1R=x
15 13 14 eqtrid RRingxBaseR1ROx=x
16 8 11 1 12 opprmul xO1R=1RRx
17 8 11 9 ringlidm RRingxBaseR1RRx=x
18 16 17 eqtrid RRingxBaseRxO1R=x
19 15 18 jca RRingxBaseR1ROx=xxO1R=x
20 19 ralrimiva RRingxBaseR1ROx=xxO1R=x
21 7 10 20 rspcedvdw RRingzBaseRxBaseRzOx=xxOz=x
22 1 8 opprbas BaseR=BaseO
23 22 12 isringrng ORingORngzBaseRxBaseRzOx=xxOz=x
24 4 21 23 sylanbrc RRingORing