| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprbas.1 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 2 |
|
ringrng |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) |
| 3 |
1
|
opprrng |
⊢ ( 𝑅 ∈ Rng → 𝑂 ∈ Rng ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Rng ) |
| 5 |
|
oveq1 |
⊢ ( 𝑧 = ( 1r ‘ 𝑅 ) → ( 𝑧 ( .r ‘ 𝑂 ) 𝑥 ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑂 ) 𝑥 ) ) |
| 6 |
5
|
eqeq1d |
⊢ ( 𝑧 = ( 1r ‘ 𝑅 ) → ( ( 𝑧 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ↔ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ) ) |
| 7 |
6
|
ovanraleqv |
⊢ ( 𝑧 = ( 1r ‘ 𝑅 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑧 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑂 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 9 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 10 |
8 9
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 11 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 12 |
|
eqid |
⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) |
| 13 |
8 11 1 12
|
opprmul |
⊢ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 14 |
8 11 9
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) |
| 15 |
13 14
|
eqtrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ) |
| 16 |
8 11 1 12
|
opprmul |
⊢ ( 𝑥 ( .r ‘ 𝑂 ) ( 1r ‘ 𝑅 ) ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) |
| 17 |
8 11 9
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 18 |
16 17
|
eqtrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑂 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) |
| 19 |
15 18
|
jca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑂 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
| 20 |
19
|
ralrimiva |
⊢ ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑂 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
| 21 |
7 10 20
|
rspcedvdw |
⊢ ( 𝑅 ∈ Ring → ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑧 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) = 𝑥 ) ) |
| 22 |
1 8
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 23 |
22 12
|
isringrng |
⊢ ( 𝑂 ∈ Ring ↔ ( 𝑂 ∈ Rng ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑧 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) = 𝑥 ) ) ) |
| 24 |
4 21 23
|
sylanbrc |
⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Ring ) |