Step |
Hyp |
Ref |
Expression |
1 |
|
isringrng.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isringrng.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
ringrng |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) |
4 |
1 2
|
ringideu |
⊢ ( 𝑅 ∈ Ring → ∃! 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) |
5 |
|
reurex |
⊢ ( ∃! 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑅 ∈ Ring → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) |
7 |
3 6
|
jca |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) ) |
8 |
|
rngabl |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) |
9 |
|
ablgrp |
⊢ ( 𝑅 ∈ Abel → 𝑅 ∈ Grp ) |
10 |
8 9
|
syl |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
11 |
10
|
adantr |
⊢ ( ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) → 𝑅 ∈ Grp ) |
12 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
13 |
12
|
rngmgp |
⊢ ( 𝑅 ∈ Rng → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
14 |
13
|
anim1i |
⊢ ( ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) → ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) ) |
15 |
12 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
16 |
12 2
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
17 |
15 16
|
ismnddef |
⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ↔ ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) ) |
18 |
14 17
|
sylibr |
⊢ ( ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
19 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
20 |
1 12 19 2
|
isrng |
⊢ ( 𝑅 ∈ Rng ↔ ( 𝑅 ∈ Abel ∧ ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ) ) |
21 |
20
|
simp3bi |
⊢ ( 𝑅 ∈ Rng → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ) |
23 |
1 12 19 2
|
isring |
⊢ ( 𝑅 ∈ Ring ↔ ( 𝑅 ∈ Grp ∧ ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ) ) |
24 |
11 18 22 23
|
syl3anbrc |
⊢ ( ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) → 𝑅 ∈ Ring ) |
25 |
7 24
|
impbii |
⊢ ( 𝑅 ∈ Ring ↔ ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) ) |