| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprbas.1 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 3 |
1 2
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 4 |
3
|
a1i |
⊢ ( 𝑅 ∈ Rng → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) ) |
| 5 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 6 |
1 5
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) |
| 7 |
6
|
a1i |
⊢ ( 𝑅 ∈ Rng → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) ) |
| 8 |
|
eqidd |
⊢ ( 𝑅 ∈ Rng → ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) ) |
| 9 |
|
rngabl |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) |
| 10 |
3 6
|
ablprop |
⊢ ( 𝑅 ∈ Abel ↔ 𝑂 ∈ Abel ) |
| 11 |
9 10
|
sylib |
⊢ ( 𝑅 ∈ Rng → 𝑂 ∈ Abel ) |
| 12 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) |
| 14 |
2 12 1 13
|
opprmul |
⊢ ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) |
| 15 |
2 12
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 16 |
15
|
3com23 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 |
14 16
|
eqeltrid |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 18 |
|
simpl |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑅 ∈ Rng ) |
| 19 |
|
simpr3 |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) |
| 20 |
|
simpr2 |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 21 |
|
simpr1 |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 22 |
2 12
|
rngass |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 23 |
18 19 20 21 22
|
syl13anc |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 24 |
23
|
eqcomd |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 25 |
14
|
oveq1i |
⊢ ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) ( .r ‘ 𝑂 ) 𝑧 ) = ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑂 ) 𝑧 ) |
| 26 |
2 12 1 13
|
opprmul |
⊢ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 27 |
25 26
|
eqtri |
⊢ ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) ( .r ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 28 |
2 12 1 13
|
opprmul |
⊢ ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) |
| 29 |
28
|
oveq2i |
⊢ ( 𝑥 ( .r ‘ 𝑂 ) ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ) = ( 𝑥 ( .r ‘ 𝑂 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 30 |
2 12 1 13
|
opprmul |
⊢ ( 𝑥 ( .r ‘ 𝑂 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑥 ) |
| 31 |
29 30
|
eqtri |
⊢ ( 𝑥 ( .r ‘ 𝑂 ) ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑥 ) |
| 32 |
24 27 31
|
3eqtr4g |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) ( .r ‘ 𝑂 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑂 ) ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ) ) |
| 33 |
2 5 12
|
rngdir |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 34 |
18 20 19 21 33
|
syl13anc |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 35 |
2 12 1 13
|
opprmul |
⊢ ( 𝑥 ( .r ‘ 𝑂 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ( .r ‘ 𝑅 ) 𝑥 ) |
| 36 |
2 12 1 13
|
opprmul |
⊢ ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) |
| 37 |
14 36
|
oveq12i |
⊢ ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) ) = ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 38 |
34 35 37
|
3eqtr4g |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑂 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) ) ) |
| 39 |
2 5 12
|
rngdi |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 40 |
18 19 21 20 39
|
syl13anc |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 41 |
2 12 1 13
|
opprmul |
⊢ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 42 |
36 28
|
oveq12i |
⊢ ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ) = ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 43 |
40 41 42
|
3eqtr4g |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑂 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ) ) |
| 44 |
4 7 8 11 17 32 38 43
|
isrngd |
⊢ ( 𝑅 ∈ Rng → 𝑂 ∈ Rng ) |