Step |
Hyp |
Ref |
Expression |
1 |
|
rngdi.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rngdi.p |
⊢ + = ( +g ‘ 𝑅 ) |
3 |
|
rngdi.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
5 |
1 4 2 3
|
isrng |
⊢ ( 𝑅 ∈ Rng ↔ ( 𝑅 ∈ Abel ∧ ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑐 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑐 ) = ( ( 𝑎 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) ) ) |
6 |
|
oveq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 · ( 𝑏 + 𝑐 ) ) = ( 𝑋 · ( 𝑏 + 𝑐 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 · 𝑏 ) = ( 𝑋 · 𝑏 ) ) |
8 |
|
oveq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 · 𝑐 ) = ( 𝑋 · 𝑐 ) ) |
9 |
7 8
|
oveq12d |
⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑐 ) ) = ( ( 𝑋 · 𝑏 ) + ( 𝑋 · 𝑐 ) ) ) |
10 |
6 9
|
eqeq12d |
⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑐 ) ) ↔ ( 𝑋 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑋 · 𝑏 ) + ( 𝑋 · 𝑐 ) ) ) ) |
11 |
|
oveq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 + 𝑏 ) = ( 𝑋 + 𝑏 ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 + 𝑏 ) · 𝑐 ) = ( ( 𝑋 + 𝑏 ) · 𝑐 ) ) |
13 |
8
|
oveq1d |
⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) = ( ( 𝑋 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝑎 = 𝑋 → ( ( ( 𝑎 + 𝑏 ) · 𝑐 ) = ( ( 𝑎 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ↔ ( ( 𝑋 + 𝑏 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) ) |
15 |
10 14
|
anbi12d |
⊢ ( 𝑎 = 𝑋 → ( ( ( 𝑎 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑐 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑐 ) = ( ( 𝑎 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) ↔ ( ( 𝑋 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑋 · 𝑏 ) + ( 𝑋 · 𝑐 ) ) ∧ ( ( 𝑋 + 𝑏 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) ) ) |
16 |
|
oveq1 |
⊢ ( 𝑏 = 𝑌 → ( 𝑏 + 𝑐 ) = ( 𝑌 + 𝑐 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑏 = 𝑌 → ( 𝑋 · ( 𝑏 + 𝑐 ) ) = ( 𝑋 · ( 𝑌 + 𝑐 ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑏 = 𝑌 → ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑌 ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 · 𝑏 ) + ( 𝑋 · 𝑐 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑐 ) ) ) |
20 |
17 19
|
eqeq12d |
⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑋 · 𝑏 ) + ( 𝑋 · 𝑐 ) ) ↔ ( 𝑋 · ( 𝑌 + 𝑐 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑐 ) ) ) ) |
21 |
|
oveq2 |
⊢ ( 𝑏 = 𝑌 → ( 𝑋 + 𝑏 ) = ( 𝑋 + 𝑌 ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 + 𝑏 ) · 𝑐 ) = ( ( 𝑋 + 𝑌 ) · 𝑐 ) ) |
23 |
|
oveq1 |
⊢ ( 𝑏 = 𝑌 → ( 𝑏 · 𝑐 ) = ( 𝑌 · 𝑐 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) = ( ( 𝑋 · 𝑐 ) + ( 𝑌 · 𝑐 ) ) ) |
25 |
22 24
|
eqeq12d |
⊢ ( 𝑏 = 𝑌 → ( ( ( 𝑋 + 𝑏 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ↔ ( ( 𝑋 + 𝑌 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑌 · 𝑐 ) ) ) ) |
26 |
20 25
|
anbi12d |
⊢ ( 𝑏 = 𝑌 → ( ( ( 𝑋 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑋 · 𝑏 ) + ( 𝑋 · 𝑐 ) ) ∧ ( ( 𝑋 + 𝑏 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) ↔ ( ( 𝑋 · ( 𝑌 + 𝑐 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑐 ) ) ∧ ( ( 𝑋 + 𝑌 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑌 · 𝑐 ) ) ) ) ) |
27 |
|
oveq2 |
⊢ ( 𝑐 = 𝑍 → ( 𝑌 + 𝑐 ) = ( 𝑌 + 𝑍 ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝑐 = 𝑍 → ( 𝑋 · ( 𝑌 + 𝑐 ) ) = ( 𝑋 · ( 𝑌 + 𝑍 ) ) ) |
29 |
|
oveq2 |
⊢ ( 𝑐 = 𝑍 → ( 𝑋 · 𝑐 ) = ( 𝑋 · 𝑍 ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑐 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ) |
31 |
28 30
|
eqeq12d |
⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 · ( 𝑌 + 𝑐 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑐 ) ) ↔ ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ) ) |
32 |
|
oveq2 |
⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 + 𝑌 ) · 𝑐 ) = ( ( 𝑋 + 𝑌 ) · 𝑍 ) ) |
33 |
|
oveq2 |
⊢ ( 𝑐 = 𝑍 → ( 𝑌 · 𝑐 ) = ( 𝑌 · 𝑍 ) ) |
34 |
29 33
|
oveq12d |
⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 · 𝑐 ) + ( 𝑌 · 𝑐 ) ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) |
35 |
32 34
|
eqeq12d |
⊢ ( 𝑐 = 𝑍 → ( ( ( 𝑋 + 𝑌 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑌 · 𝑐 ) ) ↔ ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) ) |
36 |
31 35
|
anbi12d |
⊢ ( 𝑐 = 𝑍 → ( ( ( 𝑋 · ( 𝑌 + 𝑐 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑐 ) ) ∧ ( ( 𝑋 + 𝑌 ) · 𝑐 ) = ( ( 𝑋 · 𝑐 ) + ( 𝑌 · 𝑐 ) ) ) ↔ ( ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ∧ ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) ) ) |
37 |
15 26 36
|
rspc3v |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑐 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑐 ) = ( ( 𝑎 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) → ( ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ∧ ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) ) ) |
38 |
|
simpr |
⊢ ( ( ( 𝑋 · ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 · 𝑌 ) + ( 𝑋 · 𝑍 ) ) ∧ ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) → ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) |
39 |
37 38
|
syl6com |
⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑐 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑐 ) = ( ( 𝑎 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) ) |
40 |
39
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Abel ∧ ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑐 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑐 ) = ( ( 𝑎 · 𝑐 ) + ( 𝑏 · 𝑐 ) ) ) ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) ) |
41 |
5 40
|
sylbi |
⊢ ( 𝑅 ∈ Rng → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) ) |
42 |
41
|
imp |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) |