| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprbas.1 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 2 |
1
|
opprrng |
⊢ ( 𝑅 ∈ Rng → 𝑂 ∈ Rng ) |
| 3 |
|
eqid |
⊢ ( oppr ‘ 𝑂 ) = ( oppr ‘ 𝑂 ) |
| 4 |
3
|
opprrng |
⊢ ( 𝑂 ∈ Rng → ( oppr ‘ 𝑂 ) ∈ Rng ) |
| 5 |
|
eqidd |
⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 7 |
1 6
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 8 |
3 7
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑂 ) ) |
| 9 |
8
|
a1i |
⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑂 ) ) ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 11 |
1 10
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) |
| 12 |
3 11
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( oppr ‘ 𝑂 ) ) |
| 13 |
12
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( oppr ‘ 𝑂 ) ) 𝑦 ) |
| 14 |
13
|
a1i |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( oppr ‘ 𝑂 ) ) 𝑦 ) ) |
| 15 |
|
eqid |
⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) |
| 16 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑂 ) ) = ( .r ‘ ( oppr ‘ 𝑂 ) ) |
| 17 |
7 15 3 16
|
opprmul |
⊢ ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) |
| 18 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 19 |
6 18 1 15
|
opprmul |
⊢ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) |
| 20 |
17 19
|
eqtr2i |
⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑦 ) |
| 21 |
20
|
a1i |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑦 ) ) |
| 22 |
5 9 14 21
|
rngpropd |
⊢ ( ⊤ → ( 𝑅 ∈ Rng ↔ ( oppr ‘ 𝑂 ) ∈ Rng ) ) |
| 23 |
22
|
mptru |
⊢ ( 𝑅 ∈ Rng ↔ ( oppr ‘ 𝑂 ) ∈ Rng ) |
| 24 |
4 23
|
sylibr |
⊢ ( 𝑂 ∈ Rng → 𝑅 ∈ Rng ) |
| 25 |
2 24
|
impbii |
⊢ ( 𝑅 ∈ Rng ↔ 𝑂 ∈ Rng ) |