| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprbas.1 |
|- O = ( oppR ` R ) |
| 2 |
1
|
opprrng |
|- ( R e. Rng -> O e. Rng ) |
| 3 |
|
eqid |
|- ( oppR ` O ) = ( oppR ` O ) |
| 4 |
3
|
opprrng |
|- ( O e. Rng -> ( oppR ` O ) e. Rng ) |
| 5 |
|
eqidd |
|- ( T. -> ( Base ` R ) = ( Base ` R ) ) |
| 6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 7 |
1 6
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
| 8 |
3 7
|
opprbas |
|- ( Base ` R ) = ( Base ` ( oppR ` O ) ) |
| 9 |
8
|
a1i |
|- ( T. -> ( Base ` R ) = ( Base ` ( oppR ` O ) ) ) |
| 10 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 11 |
1 10
|
oppradd |
|- ( +g ` R ) = ( +g ` O ) |
| 12 |
3 11
|
oppradd |
|- ( +g ` R ) = ( +g ` ( oppR ` O ) ) |
| 13 |
12
|
oveqi |
|- ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` O ) ) y ) |
| 14 |
13
|
a1i |
|- ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` O ) ) y ) ) |
| 15 |
|
eqid |
|- ( .r ` O ) = ( .r ` O ) |
| 16 |
|
eqid |
|- ( .r ` ( oppR ` O ) ) = ( .r ` ( oppR ` O ) ) |
| 17 |
7 15 3 16
|
opprmul |
|- ( x ( .r ` ( oppR ` O ) ) y ) = ( y ( .r ` O ) x ) |
| 18 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 19 |
6 18 1 15
|
opprmul |
|- ( y ( .r ` O ) x ) = ( x ( .r ` R ) y ) |
| 20 |
17 19
|
eqtr2i |
|- ( x ( .r ` R ) y ) = ( x ( .r ` ( oppR ` O ) ) y ) |
| 21 |
20
|
a1i |
|- ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` ( oppR ` O ) ) y ) ) |
| 22 |
5 9 14 21
|
rngpropd |
|- ( T. -> ( R e. Rng <-> ( oppR ` O ) e. Rng ) ) |
| 23 |
22
|
mptru |
|- ( R e. Rng <-> ( oppR ` O ) e. Rng ) |
| 24 |
4 23
|
sylibr |
|- ( O e. Rng -> R e. Rng ) |
| 25 |
2 24
|
impbii |
|- ( R e. Rng <-> O e. Rng ) |