Metamath Proof Explorer


Theorem opprrngb

Description: A class is a non-unital ring if and only if its opposite is a non-unital ring. Bidirectional form of opprrng . (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypothesis opprbas.1
|- O = ( oppR ` R )
Assertion opprrngb
|- ( R e. Rng <-> O e. Rng )

Proof

Step Hyp Ref Expression
1 opprbas.1
 |-  O = ( oppR ` R )
2 1 opprrng
 |-  ( R e. Rng -> O e. Rng )
3 eqid
 |-  ( oppR ` O ) = ( oppR ` O )
4 3 opprrng
 |-  ( O e. Rng -> ( oppR ` O ) e. Rng )
5 eqidd
 |-  ( T. -> ( Base ` R ) = ( Base ` R ) )
6 eqid
 |-  ( Base ` R ) = ( Base ` R )
7 1 6 opprbas
 |-  ( Base ` R ) = ( Base ` O )
8 3 7 opprbas
 |-  ( Base ` R ) = ( Base ` ( oppR ` O ) )
9 8 a1i
 |-  ( T. -> ( Base ` R ) = ( Base ` ( oppR ` O ) ) )
10 eqid
 |-  ( +g ` R ) = ( +g ` R )
11 1 10 oppradd
 |-  ( +g ` R ) = ( +g ` O )
12 3 11 oppradd
 |-  ( +g ` R ) = ( +g ` ( oppR ` O ) )
13 12 oveqi
 |-  ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` O ) ) y )
14 13 a1i
 |-  ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` O ) ) y ) )
15 eqid
 |-  ( .r ` O ) = ( .r ` O )
16 eqid
 |-  ( .r ` ( oppR ` O ) ) = ( .r ` ( oppR ` O ) )
17 7 15 3 16 opprmul
 |-  ( x ( .r ` ( oppR ` O ) ) y ) = ( y ( .r ` O ) x )
18 eqid
 |-  ( .r ` R ) = ( .r ` R )
19 6 18 1 15 opprmul
 |-  ( y ( .r ` O ) x ) = ( x ( .r ` R ) y )
20 17 19 eqtr2i
 |-  ( x ( .r ` R ) y ) = ( x ( .r ` ( oppR ` O ) ) y )
21 20 a1i
 |-  ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` ( oppR ` O ) ) y ) )
22 5 9 14 21 rngpropd
 |-  ( T. -> ( R e. Rng <-> ( oppR ` O ) e. Rng ) )
23 22 mptru
 |-  ( R e. Rng <-> ( oppR ` O ) e. Rng )
24 4 23 sylibr
 |-  ( O e. Rng -> R e. Rng )
25 2 24 impbii
 |-  ( R e. Rng <-> O e. Rng )