Description: Addition operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014) (Proof shortened by AV, 6-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprbas.1 | |- O = ( oppR ` R ) |
|
| oppradd.2 | |- .+ = ( +g ` R ) |
||
| Assertion | oppradd | |- .+ = ( +g ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | |- O = ( oppR ` R ) |
|
| 2 | oppradd.2 | |- .+ = ( +g ` R ) |
|
| 3 | plusgid | |- +g = Slot ( +g ` ndx ) |
|
| 4 | plusgndxnmulrndx | |- ( +g ` ndx ) =/= ( .r ` ndx ) |
|
| 5 | 1 3 4 | opprlem | |- ( +g ` R ) = ( +g ` O ) |
| 6 | 2 5 | eqtri | |- .+ = ( +g ` O ) |