Description: Addition operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014) (Proof shortened by AV, 6-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opprbas.1 | |- O = ( oppR ` R ) |
|
oppradd.2 | |- .+ = ( +g ` R ) |
||
Assertion | oppradd | |- .+ = ( +g ` O ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprbas.1 | |- O = ( oppR ` R ) |
|
2 | oppradd.2 | |- .+ = ( +g ` R ) |
|
3 | plusgid | |- +g = Slot ( +g ` ndx ) |
|
4 | plusgndxnmulrndx | |- ( +g ` ndx ) =/= ( .r ` ndx ) |
|
5 | 1 3 4 | opprlem | |- ( +g ` R ) = ( +g ` O ) |
6 | 2 5 | eqtri | |- .+ = ( +g ` O ) |