Step |
Hyp |
Ref |
Expression |
1 |
|
opprbas.1 |
|- O = ( oppR ` R ) |
2 |
|
opprlem.2 |
|- E = Slot N |
3 |
|
opprlem.3 |
|- N e. NN |
4 |
|
opprlem.4 |
|- N < 3 |
5 |
2 3
|
ndxid |
|- E = Slot ( E ` ndx ) |
6 |
3
|
nnrei |
|- N e. RR |
7 |
6 4
|
ltneii |
|- N =/= 3 |
8 |
2 3
|
ndxarg |
|- ( E ` ndx ) = N |
9 |
|
mulrndx |
|- ( .r ` ndx ) = 3 |
10 |
8 9
|
neeq12i |
|- ( ( E ` ndx ) =/= ( .r ` ndx ) <-> N =/= 3 ) |
11 |
7 10
|
mpbir |
|- ( E ` ndx ) =/= ( .r ` ndx ) |
12 |
5 11
|
setsnid |
|- ( E ` R ) = ( E ` ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. ) ) |
13 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
14 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
15 |
13 14 1
|
opprval |
|- O = ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. ) |
16 |
15
|
fveq2i |
|- ( E ` O ) = ( E ` ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. ) ) |
17 |
12 16
|
eqtr4i |
|- ( E ` R ) = ( E ` O ) |