Metamath Proof Explorer


Theorem opprlem

Description: Lemma for opprbas and oppradd . (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by AV, 6-Nov-2024)

Ref Expression
Hypotheses opprbas.1
|- O = ( oppR ` R )
opprlem.2
|- E = Slot ( E ` ndx )
opprlem.3
|- ( E ` ndx ) =/= ( .r ` ndx )
Assertion opprlem
|- ( E ` R ) = ( E ` O )

Proof

Step Hyp Ref Expression
1 opprbas.1
 |-  O = ( oppR ` R )
2 opprlem.2
 |-  E = Slot ( E ` ndx )
3 opprlem.3
 |-  ( E ` ndx ) =/= ( .r ` ndx )
4 2 3 setsnid
 |-  ( E ` R ) = ( E ` ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. ) )
5 eqid
 |-  ( Base ` R ) = ( Base ` R )
6 eqid
 |-  ( .r ` R ) = ( .r ` R )
7 5 6 1 opprval
 |-  O = ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. )
8 7 fveq2i
 |-  ( E ` O ) = ( E ` ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. ) )
9 4 8 eqtr4i
 |-  ( E ` R ) = ( E ` O )