Description: Lemma for opprbas and oppradd . (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by AV, 6-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opprbas.1 | |- O = ( oppR ` R ) |
|
opprlem.2 | |- E = Slot ( E ` ndx ) |
||
opprlem.3 | |- ( E ` ndx ) =/= ( .r ` ndx ) |
||
Assertion | opprlem | |- ( E ` R ) = ( E ` O ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprbas.1 | |- O = ( oppR ` R ) |
|
2 | opprlem.2 | |- E = Slot ( E ` ndx ) |
|
3 | opprlem.3 | |- ( E ` ndx ) =/= ( .r ` ndx ) |
|
4 | 2 3 | setsnid | |- ( E ` R ) = ( E ` ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. ) ) |
5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
6 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
7 | 5 6 1 | opprval | |- O = ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. ) |
8 | 7 | fveq2i | |- ( E ` O ) = ( E ` ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. ) ) |
9 | 4 8 | eqtr4i | |- ( E ` R ) = ( E ` O ) |