Metamath Proof Explorer


Theorem opprlem

Description: Lemma for opprbas and oppradd . (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses opprbas.1
|- O = ( oppR ` R )
opprlem.2
|- E = Slot N
opprlem.3
|- N e. NN
opprlem.4
|- N < 3
Assertion opprlem
|- ( E ` R ) = ( E ` O )

Proof

Step Hyp Ref Expression
1 opprbas.1
 |-  O = ( oppR ` R )
2 opprlem.2
 |-  E = Slot N
3 opprlem.3
 |-  N e. NN
4 opprlem.4
 |-  N < 3
5 2 3 ndxid
 |-  E = Slot ( E ` ndx )
6 3 nnrei
 |-  N e. RR
7 6 4 ltneii
 |-  N =/= 3
8 2 3 ndxarg
 |-  ( E ` ndx ) = N
9 mulrndx
 |-  ( .r ` ndx ) = 3
10 8 9 neeq12i
 |-  ( ( E ` ndx ) =/= ( .r ` ndx ) <-> N =/= 3 )
11 7 10 mpbir
 |-  ( E ` ndx ) =/= ( .r ` ndx )
12 5 11 setsnid
 |-  ( E ` R ) = ( E ` ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. ) )
13 eqid
 |-  ( Base ` R ) = ( Base ` R )
14 eqid
 |-  ( .r ` R ) = ( .r ` R )
15 13 14 1 opprval
 |-  O = ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. )
16 15 fveq2i
 |-  ( E ` O ) = ( E ` ( R sSet <. ( .r ` ndx ) , tpos ( .r ` R ) >. ) )
17 12 16 eqtr4i
 |-  ( E ` R ) = ( E ` O )