Metamath Proof Explorer


Theorem opprlem

Description: Lemma for opprbas and oppradd . (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by AV, 6-Nov-2024)

Ref Expression
Hypotheses opprbas.1 𝑂 = ( oppr𝑅 )
opprlem.2 𝐸 = Slot ( 𝐸 ‘ ndx )
opprlem.3 ( 𝐸 ‘ ndx ) ≠ ( .r ‘ ndx )
Assertion opprlem ( 𝐸𝑅 ) = ( 𝐸𝑂 )

Proof

Step Hyp Ref Expression
1 opprbas.1 𝑂 = ( oppr𝑅 )
2 opprlem.2 𝐸 = Slot ( 𝐸 ‘ ndx )
3 opprlem.3 ( 𝐸 ‘ ndx ) ≠ ( .r ‘ ndx )
4 2 3 setsnid ( 𝐸𝑅 ) = ( 𝐸 ‘ ( 𝑅 sSet ⟨ ( .r ‘ ndx ) , tpos ( .r𝑅 ) ⟩ ) )
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 eqid ( .r𝑅 ) = ( .r𝑅 )
7 5 6 1 opprval 𝑂 = ( 𝑅 sSet ⟨ ( .r ‘ ndx ) , tpos ( .r𝑅 ) ⟩ )
8 7 fveq2i ( 𝐸𝑂 ) = ( 𝐸 ‘ ( 𝑅 sSet ⟨ ( .r ‘ ndx ) , tpos ( .r𝑅 ) ⟩ ) )
9 4 8 eqtr4i ( 𝐸𝑅 ) = ( 𝐸𝑂 )